STUDY MODULE DESCRIPTION FORM					
,		ode 010331561010337137			
Field of study	Profile of study (general academic, practical)	Year /Semester			
Information Engineering	(brak)	3/6			
Elective path/specialty	Subject offered in:	Course (compulsory, elective)			
Security of Information Technology (IT)	Polish	obligatory			
Cycle of study:	Form of study (full-time,part-time)				
First-cycle studies	full-time				
No. of hours		No. of credits			
Lecture: 15 Classes: - Laboratory: -	Project/seminars: 1	5 3			
Status of the course in the study program (Basic, major, other) (university-wide, from another field		ld)			
(brak)		orak)			
Education areas and fields of science and art		ECTS distribution (number and %)			
technical sciences		3 100%			

Responsible for subject / lecturer:

dr inż. Tomasz Bilski

email: tomasz.bilski@put.poznan.pl

tel. 061 66 53 554

Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	K_W05: Student has organized knowledge with theoretical foundations of basic program constructions, algorithm implementations, paradigms and programming styles, software verification methods, formal languages, compilers, platforms.	
		K_W07: Student has organized knowledge with theoretical foundations of computer networks.	
2	Skills	K_U03: Student is able to create engineer work documentation and to prepare text with the work result discussion.	
		K_U10: Student is able to use software platforms and environments for simple programs encoding, running and testing in imperative, object-oriented and declarative programming languages.	
3	Social	K_K04: Student understands the responsibility associated to his own work. Student is able to subordinate to team work rules and to take responsibility for cooperative tasks.	
	competencies	K_K07: Student understands the importance of stringent accomplishment of a given project with proper notation standards, proper language. Student understands the importance of keeping deadlines.	

Assumptions and objectives of the course:

Students should obtain knowledge of many issues related to IP telephony.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Student has organized knowledge with theoretical foundations of computer networks. [K_W07]
- $2. \ Student \ has \ organized \ knowledge \ with \ theoretical \ foundations \ of \ Internet \ technologies. \ -\ [K_W11]$
- 3. Student has organized knowledge with theoretical foundations of teleinformatics, protocols and services in telecommunication networks. $[K_W15]$

Skills

- 1. Student is able to create engineer work documentation and to prepare text with the work result discussion. [K_U03]
- 2. Student is able to do critical analysis of computer hardware operations, operating system and computer networks. $[K_U11]$
- 3. Student is able to carry out work with web sites and Internet services. [K_U15]

Social competencies:

1. Student understands the importance of stringent accomplishment of a given project with proper notation standards, proper language. Student understands the importance of keeping deadlines. - [K_K07]

Faculty of Electrical Engineering

Assessment methods of study outcomes

Lecture: test.

Laboratory: tests before exercises, exercises assesment, reports.

Course description

Lecture. VoIP systems: IP/PSTN gateways, signalling gateways, management nodes. VoIP protocols and standards overview: signalling protocols, real time protocols, resource reservation protocols. Optimization: data compression, buffering, QoS, VAD. Voice transmission parametres: jitter, delays, packet loss rate. Voice coding and compression standards: wave codecs, source codecs, hybrid codecs. Linear and nonlinear quantization, PCM, ADPCM, CELP, ACELP, MLQ. Voice quality measurement methods: MOS, PSQM, PAMS, PESQ, MNB, E-model. Signalling protocols: H.323 (H.225, H.245), SIP, IAX, MGCP, H.248/Megaco. Real time protocols: RTP, RTCP, AVP. Resource reservation protocols: RSVP. ENUM: E.164 Number Mapping, ENUM domains, NAPTR. Phone number portability: ACQ, QoR, OR, CD. Security in IP telephony: H.235, SRTP, SRTCP.

Course update 2017: new models of networks (NFV, SDN).

Teaching methdods:

- lecture with multimedia presentation,
- additional topics available in Moodle course.

Laboratory

IP Network parameters (jitter, delay, throughput, loss packet ratio) analysis. Standard signalling protocols (H.323, SIP, SDP) analysis. Real time protocols (RTP, RTCP) analysis. Signalling protocol design and implementation. VoIP systems configuration.

Basic bibliography:

- 1. J. Davidson, J. Peters, Voice over IP.
- 2. T. Wallingford, Switching to VoIP, O?Reilly Media, Inc. 2005.

Additional bibliography:

- 1. A. Simmonds, Data Communications and Transmission Principles: An Introduction.
- 2. T. Bilski, Traffic analysis based on IP packet size, Studia Informatica vol. 32 Number 3A (98), Silesian University of Technology Press, Gliwice 2011, p. 167-176.
- 3. T. Bilski, New Challenges in Network Security, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 12/2016, s. 228-232.

Result of average student's workload

Activity	Time (working hours)
1. Lectures	15
2. Projects	15
3. Preparation for test	13
4. Consultations	2
5. Homework related to projects	30

Student's workload

Source of workload	hours	ECTS
Total workload	75	3
Contact hours	32	1
Practical activities	45	1